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REPAIR OF A PLATE WITH A CIRCULAR HOLE BY APPLYING A PATCH

UDC 539.375V. V. Sil’vestrov and A. Yu. Zemlyanova

The stressed state of a thin elastic infinite plate with a circular hole covered by a circular patch of a
greater radius is considered. The center of the hole coincides with the center of the patch. The patch
is attached to the plate along its entire boundary. Stresses are prescribed at infinity on the plate and
at the hole boundary. Complex Muskhelishvili potentials are found by the method of power series,
and the behavior of stresses on the patch–plate interface and at the hole boundary is studied.
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1. Formulation of the Problem. Let a thin elastic plate S with a circular hole, which occupies the
domain |z| > R in the plane z = x + iy, be covered by a thin elastic circular patch S1: |z| 6 R1 (R 6 R1) attached
to the plate without tension and interlayers along the boundary L1: |z| = R1. The plate and the patch are uniform
and isotropic and have the thicknesses, shear moduli, and Poisson’s ratios h, µ, ν and h1, µ1, ν1, respectively.
Specified normal stresses σ∞x and σ∞y , shear stress τ∞xy , and rotation ω∞ act at infinity in the plane of the plate;
specified normal stress σr and shear stress τrθ act at the boundary L: |z| = R:

(σr + iτrθ)(t) = p(t), t ∈ L. (1.1)

The line L1 of the patch–plate interface obeys the conditions of equal displacements of the points of this line relative
to the plate and the patch and the condition of equilibrium of all points of this line:

(u + iv)1(t) = (u + iv)2(t) = (u + iv)3(t),

h1(σr + iτrθ)1(t) + h(σr + iτrθ)2(t) = h(σr + iτrθ)3(t), t ∈ L1.
(1.2)

Here u+ iv is the displacement vector; the patch is indicated by the subscript 1, the subscript 2 refers to the domain
S2: R < |z| < R1 of the plate inside the interface line, and the subscript 3 refers to the domain S3: |z| > R1 of the
plate outside the interface line.

We assume that the plate and patch surfaces touch each other without friction and are subjected to a
generalized planar stressed state determined by the Kolosov–Muskhelishvili formulas [1] in polar coordinates:

(σr + σθ)k(z) = 4 Re Φk(z),

(σr + iτrθ)k(z) = Φk(z) + Φk(z)− zΦ′k(z)− z−1zΨk(z),

2µk
∂

∂θ
(u + iv)k(z) = iz(ækΦk(z)− Φk(z) + zΦ′k(z) + z−1zΨk(z) ), (1.3)

2µk
∂

∂r
(u + iv)k(z) = eiθ(ækΦk(z)− Φk(z) )− rΦ′k(z)− e−iθ Ψk(z),

z ∈ Sk, æ1 =
3− ν1

1 + ν1
, æ2 = æ3 = æ =

3− ν

1 + ν
, µ2 = µ3 = µ, k = 1, 2, 3.

Ul’yanov State University, Cheboksary 428015. Translated from Prikladnaya Mekhanika i Tekhnicheskaya
Fizika, Vol. 45, No. 4, pp. 176–183, July–August, 2004. Original article submitted April 4, 2003; revision submitted
September 23, 2003.

0021-8944/04/4504-0605 c© 2004 Plenum Publishing Corporation 605



Here σr, σθ, and τrθ are the components of the stress tensor in polar coordinates r, θ (r eiθ = x + iy) per unit
thickness of the plate or the patch; Φk(z) and Ψk(z) are the single-valued analytical functions (complex potentials)
in the domain Sk; at infinity, we have

Φ3(z) = Γ + Qz−1 + O(z−2), Ψ3(z) = Γ′ − æQz−1 + O(z−2), (1.4)

where

Γ =
σ∞x + σ∞y

4
+

2iµ

1 + æ
ω∞, Γ′ =

σ∞y − σ∞x
2

+ iτ∞xy , Q = − X + iY

2π(1 + æ)h
.

In Eqs. (1.4), X + iY = ih

∫
L

p(t) dt = −hR

2π∫
0

p(R eiθ) eiθ dθ is the main vector of external forces acting at the hole

boundary.
2. Solution of the Problem. We write the specified function p(t) (t ∈ L) as a function of the polar

angle θ:

p(t) = p(R eiθ) = g(θ), 0 6 θ 6 2π (R = const). (2.1)

As in solving the main problems of the elasticity theory for a circle [1], we assume that the function g(θ) is
continuously differentiable in the interval [0, 2π], satisfies the conditions g(0) = g(2π) and g′(0) = g′(2π), and has
the second derivative that satisfies the Dirichlet condition. Then, this function can be expanded into the complex
Fourier series

p(R eiθ) =
+∞∑

n=−∞
An einθ, 0 6 θ 6 2π, (2.2)

where

An =
1
2π

2π∫
0

p(R eiθ) e−inθ dθ, n = 0,±1, . . . .

The coefficients An satisfy the inequalities
|An| 6 M/|n|3, M = const > 0 (n = ±1,±2, . . .), (2.3)

which provide the validity of all subsequent operations performed with the power series.
We seek the complex potentials in the domains Sk in the form of the power series

Φk(z) =
+∞∑

n=−∞
ankzn, Ψk(z) =

+∞∑
n=−∞

bnkzn, (2.4)

where

an1 = bn1 = 0, (n = −1,−2, . . .), an3 = bn3 = 0 (n = 1, 2, . . .) (2.5)

and, according to (1.4),

a03 = Γ, a−13 = Q, b03 = Γ′, b−13 = −æQ. (2.6)

On the basis of conditions (1.1) and (1.2) and formulas (1.3), we have the following boundary conditions on
the circumferences L and L1:

Φ2(t) + Φ2(t)− tΦ′2(t)− t−1tΨ2(t) = p(t), t = R eiθ,

µ−1
∗ (æ1Φ1(t)− Φ1(t) + tΦ′1(t) + t−1tΨ1(t) ) = æΦ2(t)− Φ2(t) + tΦ′2(t) + t−1tΨ2(t)

= æΦ3(t)− Φ3(t) + tΦ′3(t) + t−1tΨ3(t), t = R1 eiθ, (2.7)

h∗(Φ1(t) + Φ1(t)− tΦ′1(t)− t−1tΨ1(t) ) + Φ2(t) + Φ2(t)− tΦ′2(t)− t−1tΨ2(t)

= Φ3(t) + Φ3(t)− tΦ′3(t)− t−1tΨ3(t), t = R1 eiθ,

0 6 θ 6 2π, µ∗ = µ1/µ, h∗ = h1/h.
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Assuming that series (2.4) and the series obtained by term-by-term differentiation from Φk(z) to be uniformly
converging in the corresponding domains Sk, including their boundaries, we substitute them into conditions (2.7).
Then, taking into account (2.1), (2.2), (2.5), and (2.6), to find the remaining unknown coefficients ank and bnk of
these series, we obtain an infinite system of linear algebraic equations, which is decomposed into finite systems with
respect to individual groups of coefficients. Their solutions are found by the formulas

a02 =
(æ1 − 1)(æ + 1) Re Γ + 2h∗µ∗R

2
∗ Re A0

2h∗µ∗(æ− 1 + 2R2
∗) + (æ1 − 1)(æ + 1)

+ i Im Γ, a12 =
2(1−R2

∗)Q + R1R
3
∗A1

R2
1β1

,

a01 =
µ∗

æ1 − 1
((æ− 1 + 2R2

∗) Re a02 −R2
∗ Re A0) +

iµ∗
æ1 + 1

((æ + 1) Im Γ−R2
∗ Im A0),

a11 = −æ + 1
h∗

a12, a22 =
∆2

R2
1

(
3

æ + 1
µ∗

(1−R2
∗)Γ

′ + γ2R
4
∗A2 + 3α(1−R2

∗)A−2

)
,

a21 = −(æ + 1)h−1
∗ a22, a−22 = R2

1∆2(µ−1
∗ (æ + 1)β2Γ

′
+ αβ2A−2 − α(1−R2

∗)R
4
∗A2 ),

a−23 = α−1µ−1
∗ ((æ + 1)a−22 − h∗µ∗R

2
1Γ

′
), a−12 = Q, b−12 = −æQ,

b01 = µ∗Γ′ + µ∗æR−2
1 a−23 −R2

1a21, b02 = R−2a−22 −R2a22 −A−2,

b−33 = æa12R
4
1 + b−32, b−32 = a12R

4 + 2QR2 −A1R
3, (2.8)

b−23 = µ−1
∗ R2

1(æ1 − 1)Re a01 −R2
1(æ− 1)Re Γ + iR2 Im A0, b−22 = 2R2 Re a02 −R2A0,

b−42 = 3R2a−22 + R6a22 −R4A2, b−43 = µ−1
∗ æ1R

6
1a21 + 3R2

1a−23,

an2 = R−n
1 ∆n(γnRn+2

∗ An + (n + 1)α(1−R2
∗)R

2−n
∗ A−n ), an1 = −(æ + 1)h−1

∗ an2,

a−n2 = Rn
1 ∆nα(R2−n

∗ βnA−n − (n− 1)(1−R2
∗)R

n+2
∗ An ), a−n3 = α−1µ−1

∗ (æ + 1)a−n2,

b−(n+2)2 = (n + 1)R2a−n2 + R2n+2an2 −Rn+2An, b−(n+2)3 = µ−1
∗ æ1R

2n+2
1 an1 + (n + 1)R2

1a−n3,

b(n−2)1 = µ∗æR2−2n
1 a−n3 − (n− 1)R2

1an1, b(n−2)2 = R2−2na−n2 − (n− 1)R2an2 −A−nR2−n,

b(n−2)1 =
µ∗æa−n3

R2n−2
1

− (n− 1)R2
1an1, b(n−2)2 =

a−n2

R2n−2
− A−n

Rn−2
− (n− 1)R2an2, n = 3, 4, . . . ,

where R∗ = R/R1, α = µ−1
∗ (æ + 1 + h∗µ∗æ), βn = æ + µ−1

∗ h−1
∗ æ1(æ + 1) + R2n+2

∗ , γn = h∗æ
2 + R2−2n

∗ α, and
∆n = (βnγn + α(n2 − 1)(1−R2

∗)
2)−1.

It follows from these formulas and inequalities (2.3) that, as n →∞, the coefficients of series (2.4) decrease
as |n|−3, which ensures the convergence of these series.

Remark 1. The solution of the problem in the case of sealing a circular hole by a patch of the same radius
can be obtained from the resultant solution directly by the limiting transition R1 → R. The thus-obtained formulas
coincide, with accuracy to notation, with the formulas in [2]. The conjugation conditions (1.2) can be written as

(u + iv)1(t) = (u + iv)3(t), h1(σr + iτrθ)1(t) = h(σr + iτrθ)3(t), (u + iv)2(t) = (u + iv)1(t) (t ∈ L)

(the latter condition does not affect the final solution of the problem).
3. Investigation of the Stressed State for p(t) = 0. If the hole boundary is free from stresses, all

coefficients An = 0. Then, from formulas (2.4) and (2.8), we obtain the following representations for the complex
potentials:

Φk(z) = a−2kz−2 + a0k + a2kz2, (3.1)

Ψk(z) = b−4kz−4 + b−2kz−2 + b0k, z ∈ Sk (k = 1, 2, 3)

(a−21 = a23 = b−41 = b−21 = 0). Then, the stresses at the point z = r eiθ ∈ Sk of the plate or the patch, according
to (1.3), are found by the formulas
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σr(z)k = 2Re a0k − r−2 Re b−2k + (4r−2 Re a−2k − r−4 Re b−4k − Re b0k) cos 2θ

+ (4r−2 Im a−2k − r−4 Im b−4k + Im b0k) sin 2θ,

σθ(z)k = 2 Re a0k + r−2 Re b−2k + (4r2 Re a2k + r−4 Re b−4k + Re b0k) cos 2θ

+ (−4r2 Im a2k + r−4 Im b−4k − Im b0k) sin 2θ,
(3.2)

τrθ(z)k = r−2 Im b−2k + (2r2 Im a2k − 2r−2 Im a−2k + r−4 Im b−4k + Im b0k) cos 2θ

+ (2r2 Re a2k + 2r−2 Re a−2k − r−4 Re b−4k + Re b0k) sin 2θ, k = 1, 2.

We determine for which values of the polar angle θ the stresses σr, σθ, and τrθ on the circumference |z| = r

reach their extreme values. For this purpose, omitting the arguments and subscripts at stresses for convenience, we
write Eqs. (3.2) in the form

σr = α1 + Re (c1 e2iθ), σθ = α2 + Re (c2 e2iθ), τrθ = α3 + Im (c3 e2iθ),
where α1, α2, and α3 are the real coefficients independent of the polar angle θ; c1 = 4r−2a−2k − r−4b−4k − b0k,
c2 = 4r2a2k + r−4b−4k + b0k, and c3 = 2r2a2k + 2r−2a−2k − r−4b−4k + b0k. Since a−21 = a23 = b−41 = 0, and
the remaining unknown constants a2k, a−2k, b0k, and b−4k, as is seen from Eqs. (2.8), are directly proportional
to the number Γ′ with real proportionality coefficients, we have cj = djΓ′, where dj are some real numbers.
Hence, σr = α1 + d1|Γ′|Re ei(arg Γ′+2θ), σθ = α2 + d2|Γ′|Re ei(arg Γ′+2θ), and τrθ = α3 + d3|Γ′| Im ei(arg Γ′+2θ); the
stresses σr and σθ |z| = r reach their extreme values on the circumference |z| = r at polar angles θ1 = − arg Γ′/2 and
θ2 = (π−arg Γ′)/2, whereas the stress τrθ reaches its extreme value at θ3 = (π−2 arg Γ′)/4 and θ4 = −(π+2arg Γ′)/4.

Thus, on each circumference |z| = r, the extreme values of stresses are reached at point that have the same
polar angles θ1 and θ2 or θ3 and θ4, which depend neither on the polar radius of these points nor on elastic and
geometric parameters of the plate and the patch, but depend only on arg Γ′, i.e., on the force parameters acting at
infinity.

To find the extreme values of stresses in each domain Sk, we have to assume that θ = θ1 and θ = θ2 or
θ = θ3 and θ = θ4 in Eqs. (3.2) and find the extreme values of the resultant power functions of the polar radius r

varied in the range determined by the chosen domain Sk.
To find the displacements of the points of the lines L and L1, we use the formulas

(u + iv)(R1 eiθ) =

R1∫
0

∂(u + iv)1
∂r

dr +

θ∫
0

∂(u + iv)1
∂θ

dθ,

(u + iv)(R eiθ) =

R1∫
0

∂(u + iv)1
∂r

dr +

R∫
R1

∂(u + iv)2
∂r

dr +

θ∫
0

∂(u + iv)2
∂θ

dθ,

and also formulas (1.3), (3.1). After simple transformations, we obtain the equalities

(u + iv)(R1 eiθ) = R1(−(a21R
2
1 + b01) e−iθ +(æ1a01 − a01) eiθ +æ1a21R

2
1 e3iθ /3)/(2µ1),

(u + iv)(R eiθ) = R(−(æa−22R
−2 + a22R

2 + b02) e−iθ +(æa02 − a02 + b−22R
−2) eiθ

+ (æa22R
2 − 3a−22R

−2 + b−42R
−4) e3iθ /3)/(2µ).

Examples. Let the plate and the patch whose thickness is half of the plate thickness have elastic constants
µ = 40 MPa and ν = 0.37 (for Cu) and µ1 = 174.2 MPa and ν1 = 0.22 (for Al2O3 alloy). The ratio of the hole and
patch radii is 1 : 2. At infinity, the plate is subjected only to the tensile stress σ∞x = σ MPa or only the shear stress
τ∞xy = σ MPa (per unit thickness of the plate). All the remaining initial force parameters are zero.

The solid curves in Fig. 1 show the deformation of the hole boundaries L and the patch boundaries L1; the
dashed curves show the initial positions of the circumferences L and L1 before application of the loads. To be more
illustrative, the displacements of the points of the lines L and L1 are taken with the coefficient µ/(2σR1). The cases
with σ∞x 6= 0 and τ∞xy 6= 0 are depicted in Fig. 1a and Fig. 1b, respectively.

If only the load σ∞x = σ is applied to the plate, the stresses σr (Fig. 2a), τrθ (Fig. 2b), and σθ (Fig. 2c) on
the upper half of the interface line L1 on the side of both the plate and the patch are plotted in Fig. 2 as functions
of the polar angle θ (0 6 θ 6 π). The stresses on the lower half of the line L1 (−π 6 θ 6 0) are distributed
symmetrically. The following notation is used here and in the subsequent figures: stresses on L1 from the side of
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the patch (1), stresses on the inner (2) and outer (3) sides of the line L1 from the side of the plate, stresses in the
case of the classical problem of extension of a plate with a stress-free hole |z| 6 R under the action of a remote load
σ∞x (4), stresses on L1 from inside (5) and outside (6) in the case of sealing a circular hole of radius R1 by a patch
of the same radius.

As it follows from Fig. 2, the presence of a circular ring S2 in the problem considered decreases the concen-
tration of stresses on the interface line L1 from the side of the patch (curve 1) as compared to sealing of the hole
of radius R1 by a patch of the same radius (curve 5), i.e., S2 plays the role of a stringer.

Figure 3 shows the tensile stress σθ at the hole boundary L for σ∞x = σ (Fig. 3a) and τ∞xy = σ (Fig. 3b).
The solid curve shows the plots of σθ at the hole boundary reinforced by a patch; the dotted curve shows the data
with the patch absent. The stresses σr and τrθ on L equal zero a priori. As it follows from Fig. 3, in the example
considered, the presence of a patch decreases the concentration of the stress σθ at the hole boundary severalfold.

Figure 4 shows the maximum absolute values of the tensile stress σθ in the plate at the hole boundary
reinforced by a patch versus the ratios of the patch-to-plate radii R1/R (Fig. 4a), thicknesses h/h1 (Fig. 4b), and
shear moduli µ/µ1 (Fig. 4c). Curves 1 and 2 refer to plate loading by the stresses σ∞x = σ and τ∞xy = σ, respectively.
If there is no patch, max |σθ| at the hole boundary equals 3σ for σ∞x = σ and 4σ for τ∞xy = σ. The maximum value
of |σθ| is reached at the points with the polar angles θ = ±π/2 for σ∞x = σ and at the points with the polar angles
θ = ±π/4 and θ = ±3π/4 for τ∞xy = σ.

In other formulations, the problem of repair of plates with defects by means of patches is considered in [3–5].
This work was supported by the Russian Foundation for Basic Research (Grant No. 04-01-00160).
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